Segmentasi Pengadilan Berdasarkan Jumlah Putusan Dan Lokasi Menggunakan Algoritma Hierarchical Clustering

Abstract
The grouping of court data in Indonesia provides a significant understanding of the pattern of workload distribution in judicial institutions. To identify court characteristics, the grouping method in data mining is used by applying the Hierarchical Clustering algorithm. The dataset used was obtained from Kaggle and includes information on the number of judgments and court locations in various provinces. The data is processed through the cleanup stage to address missing values, data type conversion, and normalization so that numerical attributes are at a uniform scale and ready for analysis. The results of the grouping divided the courts into two main categories, namely the group with a very low number of judgments and the group with a medium to high number of judgments. This segmentation provides a clearer picture of the distribution of workloads between regions and can be used by stakeholders to support strategic planning, resource distribution, and the development of more effective and equitable judicial policies. This approach is expected to be able to improve the efficiency and equity of the judicial system in Indonesia.
Downloads
References
F. B. Putra, A. T. R. Dani, and S. Wigantoro, “Penerapan Algoritma Hierarchical Clustering Dalam,” MAP J., pp. 118–126, 2023.
S. D. Raihannabil, “Penerapan Metode Hierarchical Clustering untuk Klasterisasi Provinsi di Indonesia berdasarkan Indikator Status Gizi Anak Baduta ( Bawah Dua Tahun ) Tahun 2023,” vol. 2, no. 3, pp. 424–436, 2024.
A. Y. Kartini and A. M. Jamiluddin, “Application of Agglomerative Hierarchical Clustering Method for Grouping Non-Cash Food Assistance Recipients in Ngambon Bojonegoro,” J Stat., vol. 16, no. 1, pp. 342–353, 2023, [Online]. Available: www.unipasby.ac.id
A. Alif, R. Mulyana, A. R. Juwita, A. M. Siregar, and A. Fauzi, “Penerapan Algoritma K-means Clustering dan Hierarchical Clustering dalam Mengelompokkan Data Pengangguran di Karawang,” no. 2021, 2024, doi: 10.33364/algoritma/v.21-2.2155.
R. Gustriansyah, J. Alie, and N. Suhandi, “Hierarchical clustering for crime rate mapping in Indonesia,” Ilk. J. Ilm., vol. 14, no. 3, pp. 275–283, 2022, doi: 10.33096/ilkom.v14i3.1135.275-283.
T. D. Wismarini, S. Eniyanti, E. Lestariningsih, R. Soelistijadi, and E. Ardhianto, “Identifikasi Pola Konflik Lahan Perkebunan di Lingkungan PTPN Group Berbasis Data Hukum Menggunakan Hierarchical Clustering dengan Algoritma Agglomerative,” vol. 14, no. 3, pp. 654–666, 2024.
rahayu deny danar dan alvi furwanti Alwie, A. B. Prasetio, R. Andespa, P. N. Lhokseumawe, and K. Pengantar, Tugas Akhir Tugas Akhir, vol. 2, no. 1. 2020.
A. Naufal, M. Fadhil, and . W., “Clustering and Financial Performance Analysis of Indonesian Coal Mining Industry Stock Prices,” J. Teknol. Dan Sist. Inf. Bisnis, vol. 6, no. 1, pp. 20–28, 2024, doi: 10.47233/jteksis.v6i1.1081.
A. Adriyendi and Y. Melia, “Klasifikasi Menggunakan Naïve Bayes Dan K-Nearest Neighbor Pada Manajemen Layanan Teknologi Informasi,” J. Teknol. Dan Sist. Inf. Bisnis, vol. 2, no. 2, pp. 99–107, 2020, doi: 10.47233/jteksis.v2i2.121.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under an Attribution 4.0 International (CC BY 4.0) that allows others to share — copy and redistribute the material in any medium or format and adapt — remix, transform, and build upon the material for any purpose, even commercially with an acknowledgment of the work's authorship and initial publication in this journal.