Eksplorasi Sentimen Pengguna pada Aplikasi E-Commerce dengan Deep Learning

Abstract
This study investigates user sentiment toward leading Indonesian e‑commerce applications through deep‑learning‑based text classification. A balanced corpus of 50,000 Indonesian‑language reviews was collected from Google Play and App Store for Tokopedia, Shopee, Bukalapak, Lazada, and Blibli. We applied two state‑of‑the‑art approaches—Long Short‑Term Memory (LSTM) networks enriched with pre‑trained FastText embeddings and fine‑tuned Bidirectional Encoder Representations from Transformers (BERT; IndoBERT v2). Data pre‑processing included text cleaning, slang normalization, stemming, and tokenization following the KBBI standard. Both models were trained with an 80:20 stratified split and evaluated using accuracy, precision, recall, F1‑score, and AUC. BERT achieved 90.6 % accuracy and 90.1 % F1‑score, outperforming LSTM's 83.2 % accuracy and 82.7 % F1‑score. McNemar’s test indicated the improvement is statistically significant (p < 0.01). These findings show that contextual embeddings capture nuanced Indonesian sentiments more effectively than sequential RNN‑based approaches, offering actionable insights for e‑commerce stakeholders to enhance customer experience.
Downloads
References
[2] A. Romadhony, S. Al Faraby, R. Rismala, U. N. Wisesti, and A. Arifianto, “Sentiment Analysis on a Large Indonesian Product Review Dataset,” J. Inf. Syst. Eng. Bus. Intell., vol. 10, no. 1, pp. 167–178, 2024, doi: 10.20473/jisebi.10.1.167-178.
[3] S. Imron, E. I. Setiawan, and J. Santoso, “Deteksi Aspek Review E-Commerce Menggunakan IndoBERT Embedding dan CNN,” J. Intell. Syst. Comput., vol. 5, no. 1, pp. 10–16, 2023, doi: 10.52985/insyst.v5i1.267.
[4] A. Ratino, R. Astri, and P. Anggraini, “Implementasi Framework Laravel Dalam Pengembangan Aplikasi E-Commerce Untuk Toko Jago Software,” J. Informatics Busisnes, vol. 01, no. 02, pp. 33–43, 2023.
[5] R. Astri, L. P. Hung, S. B. Sura, A. Kamal, and R. Yuliet, “Sentiment analysis using naive bayes for reviews of visitors to Padang City beach tourism after the COVID-19 pandemic,” E3S Web Conf., vol. 464, 2023, doi: 10.1051/e3sconf/202346406002.
[6] M. Z. Arifin, S. Yunan, A. Noertjahyana, and A. Mohamed, “Analyzing the Indonesian sentiment to rohingya refugees using IndoBERT model,” vol. 8, no. 2, pp. 180–191, 2024.
[7] C. H. Lin and U. Nuha, “Sentiment analysis of Indonesian datasets based on a hybrid deep-learning strategy,” J. Big Data, vol. 10, no. 1, 2023, doi: 10.1186/s40537-023-00782-9.
[8] H. Jayadianti, W. Kaswidjanti, A. T. Utomo, S. Saifullah, F. A. Dwiyanto, and R. Drezewski, “Sentiment analysis of Indonesian reviews using fine-tuning IndoBERT and R-CNN,” Ilk. J. Ilm., vol. 14, no. 3, pp. 348–354, 2022, doi: 10.33096/ilkom.v14i3.1505.348-354.
[9] A. Chowanda, R. Sutoyo, S. Achmad, E. W. Andangsari, S. M. Isa, and T. K. Chen, “Modeling Emotions Recognition on Indonesian Product Review By Combining Bert, Cnn, and Lstm Architecture,” Int. J. Innov. Comput. Inf. Control, vol. 20, no. 3, pp. 929–944, 2024, doi: 10.24507/ijicic.20.03.929.
[10] D. G. Mandhasiya, H. Murfi, and A. Bustamam, “The hybrid of BERT and deep learning models for Indonesian sentiment analysis,” Indones. J. Electr. Eng. Comput. Sci., vol. 33, no. 1, pp. 591–602, 2024, doi: 10.11591/ijeecs.v33.i1.pp591-602.
[11] E. Yulianti and N. K. Nissa, “ABSA of Indonesian customer reviews using IndoBERT: single-sentence and sentence-pair classification approaches,” Bull. Electr. Eng. Informatics, vol. 13, no. 5, pp. 3579–3589, 2024, doi: 10.11591/eei.v13i5.8032.
[12] A. G. Yuda, “Comparison of Service and Ease of e-Commerce User Applications Using BERT,” vol. 07, no. 02, pp. 98–107, 2024.
[13] U. Khairani, V. Mutiawani, and H. Ahmadian, “Pengaruh Tahapan Preprocessing Terhadap Model Indobert Dan Indobertweet Untuk Mendeteksi Emosi Pada Komentar Akun Berita Instagram,” J. Teknol. Inf. dan Ilmu Komput., vol. 11, no. 4, pp. 887–894, 2024, doi: 10.25126/jtiik.1148315.
[14] S. Khomsah and A. S. Aribowo, “Model Text-Preprocessing Komentar Youtube Dalam Bahasa Indonesia,” J. Resti, vol. 1, no. 3, pp. 648–654, 2017.
[15] J. C. Setiawan, K. M. Lhaksmana, and B. Bunyamin, “Sentiment Analysis of Indonesian TikTok Review Using LSTM and IndoBERTweet Algorithm,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 8, no. 3, pp. 774–780, 2023, doi: 10.29100/jipi.v8i3.3911.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under an Attribution 4.0 International (CC BY 4.0) that allows others to share — copy and redistribute the material in any medium or format and adapt — remix, transform, and build upon the material for any purpose, even commercially with an acknowledgment of the work's authorship and initial publication in this journal.